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Abstract—Cross-modal content generation has become very
popular in recent years. To generate high-quality and realistic
content, a variety of methods have been proposed. Among these
approaches, visual content generation has attracted significant
attention from academia and industry due to its vast potential
in various applications. This survey provides an overview of
recent advances in visual content generation conditioned on other
modalities, such as text, audio, speech, and music, with a focus
on their key contributions to the community. In addition, we
summarize the existing publicly available datasets that can be
used for training and benchmarking cross-modal visual content
generation models. We provide an in-depth exploration of the
datasets used for audio-to-visual content generation, filling a gap
in the existing literature. Various evaluation metrics are also
introduced along with the datasets. Furthermore, we discuss
the challenges and limitations encountered in the area, such as
modality alignment and semantic coherence. Last, we outline
possible future directions for synthesizing visual content from
other modalities including the exploration of new modalities, and
the development of multi-task multi-modal networks. This survey
serves as a resource for researchers interested in quickly gaining
insights into this burgeoning field.

Index Terms—Generative models, cross-modal, visual content
generation.

I. INTRODUCTION

IN recent years, cross-modal content generation has gained
significant attention due to the rapid development of mod-

ern deep generative networks and the growth of multimodal
data. This emerging field aims to generate high-quality and re-
alistic content across different modalities, such as text, sound,
speech, image, video, and 3D point cloud, by leveraging input
from another modality. As vision is one of the most important
senses of the human biological cognitive system, this survey
specifically focuses on visual content generation conditioned
by other modalities.

Despite the existence of several surveys in cross-modal
visual content generation [1]–[4], each of them only focuses
on a single modality, such as text-to-vision, audio-to-vision,
etc. The research community lacks a comprehensive survey
that provides a big picture of the whole area. To bridge
this gap, this survey aims to cover the recent advances in
various cross-modal visual content generation areas, making it
easier for researchers to track recent studies. More importantly,
the underlying methods used in cross-modal visual content
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generation have significant overlap so it would be important
to discuss them jointly and gain a better understanding of their
similarities, differences, strengths, and weaknesses. Discussing
them jointly can determine potential relations between text,
audio, and other modality-guided visual content generation
methods, where leveraging methods from one area can en-
hance the performance of another.

As we know, humans have the ability to imagine a scene
using information from other senses, such as hearing, touching,
tasting, smelling, etc. This cognitive process showcases the
ability of the human brain to bridge the gap between other
modalities and vision. This has motivated researchers to ex-
plore cross-modal visual content generation by exploring pos-
sible ways of transferring information from various domains
to vision, as this will pave the way for a wide range of ground-
breaking applications [5]. For instance, we can automatically
translate the live-streaming video of a person from a specific
language to the desired one while preserving realistic lip
synchronization [6]. For another example, automatic chore-
ographing is possible by developing music-to-dance generation
methods. Such a model synthesizes virtual avatars, performing
movements aligned with the melody and beats of the music [7].

There is a long history of research in visual content genera-
tion. In 1980s, Chellappa et al. [8] proposed a two-dimensional
noncausal autoregressive model for pattern generation tasks.
They demonstrated that by combining shades from surround-
ing areas with random noise, new patterns can be generated.
Similarly, Cross et al. [9] investigated the use of Markov
Random Fields (MRF) to represent and create textures by
learning the mathematical relations between patterns. Despite
their functionality, these models are not capable of generat-
ing realistic images. Wei et al. [10] proposed an enhanced
method based on MRF for texture synthesis by including tree-
structured vector quantization. They extended the capability
of image generation from simple textures to complex images.
Despite the improvement in the generated visual content, the
image quality is still far from being realistic. One primary
drawback of traditional methods is their inherent tendency to
capture only local structures by exclusively learning the rela-
tionship between a pixel and its neighbors. These approaches
struggle with learning global structures and patterns present
in many natural images, leading to results lacking realism and
containing artifacts.

Later on, various machine learning models such as Support
Vector Machine (SVM) [11], K-Nearest Neighbor (KNN) [12]
and Boltzmann Machines [13] have been investigated. Eslami
developed an object shape generation model, based on the
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Fig. 1: The proposed taxonomy of the existing cross-modal visual content generation methods.

Boltzmann machine called the Shape Boltzmann Machine
(SBM) [13]. This model learns data distribution directly
from training data. Guo et al. proposed a Dynamic Texture
Synthesis model for videos, namely Linear Dynamic Systems
(LDS) [12] using Singular Value Decomposition (SVD) and
KNN. However, these methods have difficulties in generating
high-quality, realistic imagery and videos due to the use of
handcrafted features and shallow models.

With the development of deep neural networks and their
outstanding performance in various areas [14]–[16], the exist-
ing mainstream cross-modal visual content generation meth-
ods are all deep-learning-based. A deep network effectively
learns the representations of visual content and captures
complex patterns within the data. It also enables end-to-
end learning by mapping the source data into the expected
target without the need for handcrafted features as was the
case with prior techniques [5], [17]. AlignDraw [18] and
Speech2V id [19] are the two deep-learning-based pioneer-
ing research in text-to-vision and audio-to-vision generation,
respectively. AlignDraw [18] uses a bidirectional Recurrent
Neural Network (RNN) for textual data processing and a set
of generative RNNs for image generation. In this work, an
image is generated patch by patch. Using audio sequence and
an identity frame, Speech2V id [19] generates talking face
videos using Convolutional Neural Networks (CNNs).

With the emergence of Generative Adversarial Networks
(GANs) [20], they have been widely used in different gen-
eration tasks [21], [22]. GANs present a strong ability in
generating realistic and diverse samples by leveraging the
adversarial training process [23]. Nevertheless, the obtained
results for text-to-vision and audio-to-vision are often blurry
and not realistic, especially when using newer large-scale
datasets [24]–[27]. Mainly due to the lack of mechanisms in
these methods to capture global coherence and intrinsic details,
they fail to project information effectively from the source
domain to the expected visual domain.

To address the above limitations, some researchers utilize

large-scale language models (Transformers [28]) in place
of traditional text encoders (e.g., RNN-based models [23])
for textual data processing [29], [30]. Assisted by the self-
attention mechanism in Transformers, the relationships be-
tween words in a sentence are better captured and the gen-
erative model effectively learns the contextual dependencies
and semantic structure of the input description [28], [30].
Transformers have been used for audio and visual processing
as well, considerably improving the audio-to-vision generation
alignment [31]. More recently, Denoising Diffusion Probabilis-
tic Models (DDPMs) [32] have attracted widespread attention
and been used in a variety of cross-modal content generation
tasks [33]–[35]. As opposed to traditional generative models
that rely on explicit probability distributions, diffusion mod-
els learn to generate samples by iteratively diffusing noise
through a series of learnable steps and predicting the additional
noises [32], [36].

Cross-modal visual content generation is at its early stage
and due to the increasing number of research on this topic,
keeping track of the recent state-of-the-art without a concise
survey can be challenging. Also, most of the existing survey
papers focus on a single modality. For instance, Agnese et
al. provided an overview of text-to-image generation focusing
on the architecture design of GAN-based models [1]. Zhang
et al. [2] summarized recent text-to-image generation meth-
ods utilizing diffusion models, accompanied by background
information on this topic and current challenges. For audio-
to-talking face generation, Zhen et al. [3], and Tong et al. [4]
provided an overview on generative models design, datasets,
metrics and challenges.

To bridge this gap, this paper presents a comprehensive
survey of state-of-the-art methods for visual content generation
across different modalities. To better investigate each task, we
propose a new taxonomy of the existing cross-modal visual
content generation, as shown in Fig. 1. To assist researchers
in identifying and understanding the challenges associated
with assessing the quality and effectiveness of generated
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visual content, we provide and compare current datasets and
evaluation metrics. More importantly, we further discuss the
existing gaps and future research directions in this field, to
enhance the identification of emerging trends and push the
state-of-the-art in the cross-modal visual content generation
domain. To summarize, the main contributions of this survey
include:

• To the best of our knowledge, this is the first overview
that covers recent multimodal-guided visual content gen-
eration methods, including text-to-vision, audio-to-vision
and other-modality-guided visual content generation.

• We comprehensively overview the benchmarking datasets
and evaluation metrics. We also highlight the challenges
associated with the existing datasets and metrics in cross-
modal visual content generation.

• Open challenges and possible future directions for
multimodal-guided visual content generation are identi-
fied for future work.

The remainder of this survey is organized as follows. We
first provide an overview of the methods used in cross-modal
visual content generation in Section II. We further review
and compare the existing text-to-vision, audio-to-vision and
visual content generation methods based on other modalities
in Section III, Section IV, and Section V, respectively. The
widely used datasets and evaluation metrics are presented
in Section VI. In Section VII, we discuss the challenges in
the area and propose several possible directions for further
development. Last, the conclusion is drawn in Section VIII.

II. AN OVERVIEW OF THE UNDERLYING METHODS USED
IN CROSS-MODAL VISUAL CONTENT GENERATION

Although the inputs of different cross-modal generation
tasks come from different domains, the methods are closely
related and follow similar underlying principles. In this sec-
tion, we briefly review multimodal generative models, while
providing information on the most popular methods in visual
content generation. The existing generative models can be
roughly divided into two main categories: unimodal and mul-
timodal models. Unimodal models generate the output using
the same modality as the input data, while multimodal models
generate an output of a different modality [37]. The primary
connection between these tasks is the need to identify an
appropriate mapping function to transform information from
a source modality to the target modality so that the generated
content accurately reflects the source domain information.

In recent years, considerable research has been conducted
on generative AI, resulting in numerous generative models.
As shown in Fig. 2, the three commonly employed gener-
ative frameworks include Generative Adversarial Networks
(GAN), Variational AutoEncoders (VAEs), and diffusion mod-
els. GAN [20] is comprised of two main components: genera-
tor and discriminator. While the discriminator decides, whether
the input comes from the real data distribution or not, the
generator makes an effort to understand the distribution of
the ground truth data, in order to generate realistic samples
that can fool the discriminator. However, although the samples
generated by GAN are of high quality, they exhibit less
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Fig. 2: A comparison of the commonly used generative mod-
els: VAE, GAN, and DDPM.

diversity [38]. Furthermore, they suffer from unstable training,
resulting in mode collapse and slow convergence [39].

VAEs are among the encoder-decoder-based generative
models that learn data distribution by mapping input samples
to a probabilistic distribution and then reconstructing them
so that they are as close as possible to the ground truth
distribution. Despite the ability of VAEs to learn the data
distribution, the relatively low quality of the generated results
makes them less desirable as a candidate for cross-modal
visual content generation. Notably thanks to the encoder-
decoder-based architecture, VAEs learn a rich latent represen-
tation. This can make them a suitable condition encoder or a
prior encoder, before passing the data for processing to the
generative model (e.g. VAE in stable diffusion [36]).

Denoising Diffusion Probabilistic Models (DDPMs) [32]
are the new state-of-the-art for high-quality visual content
generation. DDPMs are probabilistic generative models. They
consist of two main phases: the forward diffusion process
and the backward diffusion process. In the first stage, data
is gradually corrupted into a Gaussian noise using a Markov
chain process. In the reverse process, a network (such as U-
Net) learns to predict the noises added at each step that should
be removed in order to recover the initial image. This step is
commonly known as the denoising step and a reconstruction
loss is used for training DDPMs.

It should be noted that the training time of DDPM is
generally longer, as compared with other models, due to
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the forward and backward process. However, based on the
reported results, the diffusion models can achieve excellent
performance. They have advanced the state-of-the-art. One of
the main reasons for delivering such a great performance is
the process of learning the image structure by the steps of
adding noise and subsequent denoising. This greatly assists
the model in learning different parts of an image and making
connections between input conditions and visual content.

Despite the recent success of diffusion models, further
research development of other generative models is strongly
encouraged. Nowadays there are a variety of pre-trained task-
specific transformers, which can be a good starting point as
pre-trained encoders. Further, earlier generative models are
relatively faster in terms of the training and generation speed.
Additional research is required to investigate the impact of the
recent advances on earlier generative models. This will further
be discussed in Section VII.

III. TEXT TO VISUAL CONTENT GENERATION

In this section, we first overview the mainstream methods
for text-to-vision (images/videos) generation. Then we intro-
duce the methods developed for text-to-motion generation.

A. Text-to-Image/Video

Synthesizing images and videos based on a text prompt
is a popular research topic. The generated visual content
is expected to reflect the text description while ensuring a
realistic quality. Learning an aligned feature space for vision
and language poses a great challenge for researchers since they
originate from different modalities. Various studies have been
conducted to address this issue. In this section, we categorize
the existing methods into two subsections based on the space
in which the generation process is performed.

1) Generation in the Pixel Space:
Text-to-image generation Zhang et al. proposed Stack-

GAN [22] for image generation using textual descriptions.
The proposed architecture has two stages. In the first stage, a
conditional GAN takes the textual description as input and
generates a low-resolution image that captures the overall
scene and layout. To enhance the details and improve the
visual quality, the second stage refines the output of the first
stage conditioned on the text description. This framework
allows the model to progressively refine and generate more
realistic and visually coherent results. Zhang et al. further
hypothesized that GAN training for image generation can
be stabilized by breaking the generation process into sub-
problems (gradually enhancing the image quality at each step).
This motivated them in developing a tree-like structure based
on stackGAN [22], known as StackGAN++ [40]. By incorpo-
rating conditioning augmentation techniques and multi-scale
generators and discriminators, StackGAN++ achieves signif-
icant improvements in image quality and diversity compared
to previous methods in text-to-image synthesis.

To improve the semantic alignment between the input de-
scription and the synthesized visual content, Xu et al. proposed
AttnGAN [23]. This model incorporates attention mechanisms
to focus on the relevant parts of the text and image during

(a) DALL-E1 (b) DALL-E2

(c) GLIDE classifier-free (d) GLIDE CLIP-guided(e) Stable Diffusion

Fig. 3: A comparison of popular text-to-image generation
models. The input prompt is “an armchair in the shape of
an avocado”.

the generation process. Similar to the previous architectures,
AttnGAN has two main components: text encoder and image
generator. The key contribution of AttnGAN lies in the at-
tention mechanism employed at multiple stages, allowing the
generative model to access the key features extracted from the
input description in order to refine the synthesized image.

Recently, Transformers have achieved promising perfor-
mance in natural language processing, such as machine trans-
lation [41] and language generation [42]. As a result, they
have been widely used as text encoders in many text-to-vision
generation frameworks, replacing the traditional methods. By
leveraging the semantic context embedded in textual data,
Transformers can be considered as valuable sources of in-
formation for fine-grained and text-aligned image generation.
Naveen et al. addressed the challenge of generating realistic
images from textual descriptions by incorporating Transformer
models such as BERT, GPT2, and XLNet into AttnGAN [30].
Considering the ability of Transformers to capture semantic
information and context from text, integrating them with
AttnGAN enhances the text vision alignment. Ramesh et al.
proposed a Transformer-based architecture for text-to-image
generation using text and image tokens as a single stream
of data. This allows the model to generate visual content
from text prompts that were not used in the training stage.
Therefore, it brings zero-shot learning capability into text-to-
vision generation and reduces the requirement of having a
large volume of accurately aligned text-image data for training.
This model is commonly known as DALL-E1 [43] and it
consists of two main steps. First, it uses a discrete Variational
Auto Encoder (dVAE) to convert an image into multiple
image tokens. In the second stage, image and text tokens are
concatenated and trained in an autoregressive manner using
a Transformer to learn a prior distribution over the text and
image tokens. An example image generated by DALL-E1
is shown in Figure 3-(a). Although DALL-E1 generates an
armchair shape, including avocado in the design, the generated
object is not realistic and detail-oriented.

Recently, Denoising Diffusion Probabilistic Models
(DDPMs) [32] have demonstrated impressive results in
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image generation. Numerous text-to-visual content generation
methods [44]–[49] have employed diffusion models and
obtained higher-resolution images. Guided Language to
Image Diffusion for Generation and Editing (GLIDE) [50]
is among the first diffusion-based text conditional image
generation models. This work investigates image synthesis
based on the description provided using CLIP or classifier-
free approaches. CLIP guidance involves utilizing the CLIP
model [51], which combines representations extracted by
a vision encoder and a text encoder. The classifier-free
guidance does not involve any classifier. Based on the results
obtained and the feedback received from human evaluators,
the synthesized results by the classifier-free guidance are
more realistic and aligned with input descriptions. This is
demonstrated in Fig. 3, where the image generated with
the classifier-free guidance depicts an armchair that is more
realistic than the one with the clip guidance. This model
surpasses the state-of-the-art by the methods such as DALL-E
in terms of fidelity and diversity. It should be noted that,
besides text-to-image generation, GLIDE can also be used
for image inpainting, providing text-guided image editing.

Imagen [52] is another text-to-image generation model that
performs in the pixel space. Similar to GLIDE [50], Imagen
uses a classifier-free guidance approach for visual content
generation. The core difference between GLIDE and Imagen
lies in their selection of text encoder and how it is used.
GLIDE uses a large language model as the text encoder and
trains it together with a diffusion prior and text-image pairs.
In contrast, Imagen employs the frozen T5-XXL model as a
text encoder to accelerate the training. Additionally, Imagen
demonstrates that the use of language models, trained solely
on text-only corpus, works well as a text encoder. Moreover,
training a large language model on text-image pairs cannot
necessarily lead to better-aligned and higher-quality images.
In view of this, Imagen uses two super-resolution diffusion
modules to enhance the image quality, as depicted in Fig. 4.

Text-to-Video Generation Using Transformers in video
generation is often challenging due to computational costs and
the scarcity of relevant text-video datasets. Hong et al. ad-
dressed these limitations by proposing the Transformer-based
CogVideo [53], which is based on the pre-trained text-to-image
CogView [29] model, enabling it to leverage the knowledge
learned from the text-to-image generation domain. Also, a
multi-frame-rate hierarchical strategy is used to enhance the
alignment and temporal consistency between text and video
content. This approach applies different frame rates at each
step based on the described activities in the text, allowing
the model to generate a frame sequence that fully covers the

Fig. 5: The architecture of Video-ControlNet [56].

described action.
In contrast to the text-image pair data, there is a lack of

large-scale text-video datasets with high-quality video frames.
Make-A-Video [54] aims to leverage the progress made in
text-to-image generation and apply it to the text-to-video
generation domain. It decomposes the full temporal U-Net and
attention tensors and approximates them in space and time.
This decomposition enables effective modeling of both the
spatial and temporal aspects of a video. The synthesis of high-
resolution videos is enabled by a spatial-temporal pipeline that
includes a video decoder, an interpolation model, and two
super-resolution models.

The aforementioned studies are confined to generating fixed
and short videos. To overcome this restriction, Villegas et
al. introduced PHENAKI [55], in which a new model for
learning video representations that compresses videos into
discrete tokens was proposed. The extracted tokens act as
video frame representations. By concatenating these tokens
and de-tokenizing them, a video is created. To produce longer
videos, PHENAKI conditions the frame generation process
by different text descriptions at each time step. Further, to
overcome the data limitations, it jointly trains on a large corpus
of image-text pairs, along with a smaller number of video-text
examples.

Chen et al. went one step further and proposed the Video-
ControlNet [56], a controllable text-to-video diffusion model,
using a novel strategy. As shown in Fig. 5, the method
generates videos based on an input text description and uses
auxiliary control signals such as edge or depth maps as
guidance measures. Since the ControlNet strategy was ini-
tially proposed for text-to-image generation, a spatial-temporal
attention mechanism is added to maintain temporal consis-
tency between the generated frames. This attention mechanism
enables the model to comprehend how various parts of a
video relate to one another across time. Video-ControlNet
drives the video sequence generation based on the initial frame
and a subsequent control condition. This strategy is called
first-frame conditioning. Based on the reported results, first-
frame conditioning can facilitate the extension of the text-to-
image generation into the text-to-video domain, enabling the
production of videos of arbitrary length.
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(a) DALL-E2 (b) Stable Diffusion

Fig. 6: The architectures of DALL-E2 [57] and Stable Diffusion [36].

2) Generation in Latent Space:
Although visual content generation has gained widespread
popularity, synthesizing diverse, realistic and high-quality im-
ages is computationally expensive [29], [36]. To address this
issue, many studies perform the generation in a latent space.
Latent space works as an intermediate representation of much
lower dimensionality, thus affording greater computational
efficiency [36].

An improvement of DALL-E1 was proposed by using
representations learned by CLIP for text-to-image generation.
This model is commonly known as the DALL-E2 or unCLIP
(Fig. 6). DALL-E2, leveraging contrastive models [51], con-
sists of two main components: a “prior” and a decoder. The
prior generates a CLIP image embedding given a text prompt,
which is used as the image representation. The decoder gener-
ates an image conditioned on the generated image embedding
in the previous step. Since the CLIP-derived representation is
enriched by its multi-modal latent space, using its extracted
image embedding can improve the text-vision similarity and
diversity exhibited by the synthesized image. Generated image
using DALL-E2 is illustrated in Fig. 3. It is evident that the
generated image is of higher quality than the images generated
by earlier methods and demonstrates creative design aspects.
If we compare this image to the one generated by GLIDE
CLIP-guided, we can see they both share a similar shape in
how they portray an armchair in the form of an avocado. This
might be the artifact of employing CLIP image embedding as
part of image generation.

Rombach et al. proposed the latent diffusion model com-
monly known as stable diffusion [36]. Using a pre-trained
variational autoencoder, the input image is transformed into
a lower-dimensional representation. This latent space is then
used for diffusion steps. Further, to improve the flexibility
of the synthesized output, driven by the conditioning text,
cross-attention layers are included in the model architecture
(Fig. 6). This approach manages to trade off computational
complexity for detail preservation in the synthesized visual
content. As demonstrated in Fig. 3-(e), the image produced by
stable diffusion is quite detailed, in addition to the ability to
reflect the input prompt accurately. The generated image is of
high quality and we can observe that the texture and shape of
the armchair represent an avocado. VQ-diffusion [58] performs
diffusion steps in the latent space extracted by VQ-VAE [59].
The diffusion process in this model follows a masked-and-
replace strategy. Given a text prompt, the masking generation

Fig. 7: A query example for DreamBooth training [34].

allows the model to learn better which part of the image needs
to be modified.

Despite the improvement in realism and semantic alignment
of generated images using the condition mechanism in stable
diffusion, Chefer et al. [60] reported occasional neglect in
generated visual content by this model. It may fail to assign
a certain color to an object in the synthesized image or
not include a specific object in the image (e.g., including a
butterfly in the background or the existence of sunglasses). To
address this limitation Chefer et al. introduced the Generative
Semantic Nursing (GSN) method. GSN uses subject token at-
tention maps to guide the generation process as it continuously
refines the latent code over different time steps.

3) Diffusion Model and Latent Personalization:
A latent space carries considerable information for image
generation. This introduces the idea of latent representation
personalization in order to customize the generated image. For
example, changing a desired subject attribute such as color,
shape, and location, or adding new features to it.

Ruiz et al. proposed DreamBooth [34] that integrates the
subject of interest into the model’s output domain by simply
fine-tuning a pre-trained text-to-image diffusion model using
3-5 images of a particular subject (unique identifier). For train-
ing this model, it is important to shape the prompt in a way that
represents the user’s new data, such as “a [V] teapot floating
in milk” in Fig. 7. Here, [V] represents the unique identifier
and “teapot” is the class name corresponding to the desired set
of images used for fine-tuning. To prevent information drift,
in parallel to fine-tuning on text-image pairs, a class-specific
prior preservation loss is used to enforce semantic information
on the class of object into the synthesized images. In this way,
the model assures semantically aligned and versatile images.

Similar to DreamBooth, Gal et al. [61] presented a
diffusion-based approach to produce user-specified concepts
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(a) TEMOS (b) MotionCLIP

(c) CLIP-Actor (d) AvatarCLIP

(e) MotionDiffuse

Fig. 8: A comparison of different motion generation methods, including TEMOS [62], MotionCLIP [63], CLIP-Actor [64],
AvatarCLIP [65], and MotionDiffuse [35].

that faithfully replicate the essence of the text prompts. The
Text Inversion method is used to achieve this. First, text
embeddings are extracted using a pre-trained text encoder,
such as BERT. In this step, an empty vector is introduced
to the text embedding space and is learned as part of the
text encoding process to allow the model to learn about the
new subject (new vocabulary). During the training stage this
new vocabulary is represented as follows: “a close-up photo
of a S∗” or “a good photo of a S∗”. The association between
user-specified images (usually 3-5 images) and the new unique
vocabulary (S∗) is learned by minimizing the reconstruction
loss from the latent diffusion model (LDM loss) [36]. This
optimization process is known as “Text Inversion”. In contrast
to DreamBooth, the primary goal of Text Inversion is to learn
new text embeddings that correspond to the target concept,
such that some aspects of the text are faithfully reflected in
the synthesized image. DreamBooth focuses more on diverse
image generation.

Although DreamBooth and Text Inversion can generate
personalized images, their efficiency and utility are constrained
by the need for numerous reference photos and complex
training. Han et al. developed HiPer [66] for text-to-image
personalization using text embedding decomposition and one
target image. First, they investigated the CLIP embedding
space for the prompt processing. Based on their findings, while
the initial part of the CLIP embedding space (the first few
dimensions) corresponds to low-level features such as colors
and texture, the tail part (the last few dimensions) corresponds
to objects and concepts. Therefore, by preserving the tail part
of CLIP embeddings, identity information related to the target

domain can be learned as well. For training, the last N tokens
from the input prompt are selected (HiPer embedding) and
concatenated with a personalized embedding as the condition
for the pre-trained text-to-image generation.

B. Text-to-Motion Generation

Numerous studies have been undertaken for human motion
generation. In this task, synthesized avatars are expected to
maintain a fluent motion across the frames and be in sync
with the input audio. Conventional approaches rely entirely
on motion capture systems [67] and hardware [68] for the
development of realistic human motion models. Later studies
approached this task by employing music [69] and text [35],
[62], [70] as input conditions to construct versatile and real-
istic human motion. The generated motions are expected to
create aligned movements by being driven only by the input
condition. The primary challenge in this task is connecting
linguistic concepts to motion animations.

To achieve a cross-modal understanding between motion
sequences and conditions, learning a rich joint space is crucial.
Ahuja et al. developed Joint Language2Pose (JL2P) [71] by
learning a joint embedding space for the text description
and pose animation. This joint embedding space is created
using a sentence encoder and pose encoder for the language
and motion processing respectively. Since the created joint
embedding space plays a crucial role in the quality of the
generated motions, a joint translation loss is employed to
make sure that the corresponding text and motions are close to
each other. After the latent space construction, a pose decoder
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generates a sequence of pose motions. The generated motion is
highly dependent on how exact and detailed the input prompt
is. To reduce the impact of this limitation, Transformer-
based models have been further investigated. Petrovich et
al. proposed the Action-Conditioned Transformer VAE (AC-
TOR) [70] for human motion generation. ACTOR uses a
Transformer architecture, enabling the processing of long-
range sequences respecting the expected relations between the
body parts. A key component of the ACTOR architecture is the
use of positional encoding in the decoder of the Transformer.
This prevents the generated motions from regressing to the
mean pose.

In the aforementioned methods, postures are generated
based on a single action label such as “stand up” or a
text description such as “a man walks a few steps”. Being
confined to a single action makes the output less realistic
and lacks critical details. TEMOS [62] addresses this issue by
extending the ACTOR network [70] using the pre-trained Dis-
tilBERT [72] model. Unlike the previous studies that depend
on the motion sequences of the previous step to generate the
next sequence of motion, TEMOS generates motion sequences
in one shot, resulting in realistic motions and preventing static
pose sequences.

Despite generating multiple human actions, TEMOS-
synthesized avatars cannot reflect stylized motions (Fig. 8-
(a)). To align the style of the synthesized moving avatar with
the input condition, Tevet et al. developed MotionCLIP [63],
a Transformer-based text to 3D motion generation method
that is capable of elaborating textual data. This model injects
the visual perception of CLIP into human motion generation.
By using CLIP, MotionCLIP can generate actions not seen
during training and exhibit abstract language capabilities. This
endows the model with the capability to synthesize 3D avatars
performing a set of relevant actions that are driven by the
input prompt without that action explicitly being described.
For example, by receiving the phrase “Swan Lake”, it can
generate a sequence performing ballet dance (Fig. 8-(b)).

Youwang et al. proposed CLIP-Actor [64] for text-to-motion
generation. Similar to MotionCLIP [63], CLIP-Actor takes
advantage of the joint text-vision space of CLIP for 3D
human motion generation. However, this work put a special
emphasis on aligning the style of the generated avatar to
the given text prompt. For example, the synthesized moving
avatar from the “walking Steve Jobs wearing blue jeans” is
expected to not only perform walking but also resemble Steve
Jobs while wearing blue jeans. In order to achieve this, two
main components were further proposed: spatio-temporal view
augmentation and mask-weighted embedding attention. Using
these two components, CLIP-Actor can increase the similarity
between the input text and the 3D motion avatar for realistic
texture and shape generation.

Generating 3D motion that accurately reflects the ac-
tion and style described in the given text prompt is time-
consuming [65]. This further assumes more importance when
the majority of the motion synthesis methods generate avatars
in an autoregressive manner. To overcome this challenge
Hong et al. proposed AvatarCLIP [65], by leveraging the
strength of a large-scale pre-trained model, resulting in a zero-

Fig. 9: An overall architecture for talking face generation [74].

shot text to 3D motion generation model that is capable of
building customized avatars in style and motion (Fig. 8-(d)).
AvatarCLIP has three main steps in the process of stylized
motion generation. First, the 3D human geometry is generated
by the shape VAE network based on the input text description.
Next, the 3D shape is improved by aligning the textures for the
avatar using the volume rendering model. In the final stage, the
CLIP-guided motion synthesis module generates 3D motion
sequences based on the CLIP text encoder.

Although promising results have been achieved by previous
studies in text-to-motion generation, the existing methods
often fail to handle complicated motion descriptions. For ex-
ample, given the “shaking head and waving hand” description,
the generative model is expected to have control over different
body parts to accurately synthesize the avatar performing head
shaking and hand waving simultaneously. Inspired by the
progress seen by diffusion models [32], especially in text-to-
image generation, Zhang et al. proposed MotionDiffuse [35]
for text-to-motion generation. In MotionDiffuse, motion se-
quences are generated through a series of denoising steps.
Since a different amount of noise is added to the sequences
through diffusion, the model gradually learns complex dis-
tributions and variations in human actions. By leveraging a
diffusion model and large language model, realistic and diverse
motion animations are generated by MotionDiffuse (Fig. 8-
(e)). More recently, MoFusion [73] surpassed the previous
state-of-the-art by generating longer arbitrary-length motion
animations, conditioned on both text and audio. MoFusion
introduces a novel time-varying weight schedule to DDPM for
temporally and semantically aligned output. More specifically,
this network is conditioned on Mel Spectrogram (audio) and
CLIP Tokens (text) to control the generated motion anima-
tions.

IV. AUDIO TO VISUAL CONTENT GENERATION

Audio-to-video generation aims to synthesize high-
resolution and photorealistic videos conditioned by audio. To
better discuss the methods in this area, we divide this section
into talking face and dance choreography generation.

A. Talking Face Generation

It is hard to obtain talking faces that clearly express specific
speech information since the dynamic deformation of the facial
region is subject-specific and speech-dependent [75]. As a
result, audio features, facial landmarks, and sample identity
frames are usually used jointly for talking face generation
(Fig. 9). The early research focused on generating video by
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Fig. 10: The Synthesizing Obama [77] architecture.

mapping audio to mouth key points. ObamaNet [76] is among
the first neural network-based models developed for audio-
to-talking face generation using mouth key points. Using a
Text-to-Speech network, text descriptions are first transformed
into audio representation. Next, with the Time-delayed LSTM,
mouth landmarks are extracted in a way that aligns with
the given audio sequence. Last, a sequence of video frames
is generated using a pix2pix network conditioned on mouth
key points. Suwajanakorn et al. proposed the ”synthesized
Obama” [77] as a talking head system using a relatively similar
approach to ObamaNet [76]. This method utilizes a Recur-
rent Neural Network (RNN) trained on Obama’s videos for
mapping audio sequences to the corresponding mouth shapes.
By leveraging this learned mapping, the system can generate
realistic lip sync for arbitrary audio inputs. Although these
studies have achieved promising results, their generalization
ability is confined to a single identity (Fig. 10).

Many existing methods in talking face generation rely on
mouth key points, which require accurate phoneme labels
within millisecond time steps as input. They fail to accurately
morph the lip movements of an arbitrary person in a dynamic
and uncontrolled environment, leading to major chunks of the
video being out of sync with the audio description [76], [77].
To address this limitation and reduce out-of-sync lip motions,
Si et al. proposed speech2video [78] to effectively extract
visual attributes from the input audio. For this purpose, a cross-
modal distillation network comprised of a student-teacher
strategy has been developed. These extracted intermediate
features are further utilized to train a GAN for talking face
generation.

To improve coherency and enforce temporal stability in
the synthesized videos, depth maps have been used in some
studies. Constructing 3D features removes dependence on
identity information from the source image and enhances
generalization across different identities [79]. Although 3D
depth information improves the synthesized results, 3D geom-
etry annotations are often not available for video generation
tasks and annotating them can be excessively expensive. To

Fig. 11: The architecture of DiffTalk.

reduce the impact of this problem, while taking advantage of
the depth map in face generation, Hong et al. proposed an
automated method for dense 3D geometry (depth) extraction
from face videos [79] in a self-supervised manner. Leveraging
the extracted depth maps and depth-aware GAN (DaGAN),
identity and pose-preserved talking face videos are generated.

The subject-related and speech-related information are in-
tertwined in audio, making it challenging to develop speaker-
independent video generation. Most recent research has fo-
cused on addressing this challenge by developing mechanisms
to extract identity-related information from audio. Prajwal et
al. proposed an automatic GAN-based lip sync expert, known
as Wav2Lip [6], for lip movement prediction from speech. This
framework can be considered the first speaker-independent
model in talking face generation. To eliminate out-of-sync lip
movements, a trained discriminator is utilized and fine-tuned
on the training data. The generator consists of three main
components that are necessary to extract audio information
and maintain identity: the identity encoder, speech encoder,
and face decoder. Wav2Lip can synthesize videos aligned and
lip-synced to any arbitrary audio. In a similar manner, Zhou
et al. introduced MakeItTalk [80], a speaker-aware talking
head video generation framework using audio segments and
reference images as input. MakeItTalk has two main steps:
a lip-sync module and a face animation module. Lip-sync is
trained to map audio sequences to their corresponding visual
speech representations. The representations are then used to
refine the generated lip sequences and produce a talking-head
video using Image2Image translation. MakeItTalk reconstructs
videos containing facial expressions and eye blinks.

Over the past years, researchers have overcome different
challenges in talking face generation. However, the main chal-
lenge of generating a talking face video with natural expres-
sions and no additional guidance remained unresolved. Recent
improvements in diffusion models [32] yield promising results
for end-to-end talking head generation [81]. DiffTalk [33] and
Diffused Heads [81] are among the first such models.

DiffTalk [33] is a diffusion-based method for talking head
generation that operates on the latent space. This model has
three inputs (reference, ground truth and masked frames) for
training and is conditioned on facial landmarks and audio
representation. To enhance the model generalization ability,
the mouth region landmarks are removed as shown in Fig. 11.
Based on the reported results, using face landmarks and an
identity reference frame is crucial for having a personality-
aware generative model. With the assistance of diffusion
models, DiffusedHeads [81] can synthesize talking sequences
using only an identity image and an audio sequence. During
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Fig. 12: A comparison of some representative talking face
generation methods.

training, each frame is generated in a one-at-a-time manner.
DiffusedHeads is conditioned on motion frames, an identity
frame, and audio representation produced using a pre-trained
audio encoder [82]. This model can generate natural talking
faces (with head movements and eye blinks) while maintaining
the background of the identity frame during the generation
process.

In Fig. 12, we compare some renowned audio-to-talking
face generation models using a subject chosen from the HDTF
dataset [83]. Wav2lip, while offering a functional solution, it
shows noticeable drawbacks. The generated frames often ex-
hibit blurriness, and lip movements are frequently misaligned.
MakeItTalk, on the other hand, presents a noticeable improve-
ment in image quality and lip-audio alignment, compared to
Wav2lip. However, similar to Wav2lip, MakeItTalk struggles
with rendering the inside of the mouth and detailing the
teeth during speech animation. DiffTalk, leveraging a stable
diffusion model, surpasses the previous methods by producing
high image quality and achieving substantially improved lip-
audio alignment. The utilization of a stable diffusion model
and additional conditions (face landmarks) has contributed to
the reduction of jitter and enhanced the overall visual fidelity.
However, there is still room for further refinement as some
generated frames are not fully aligned with the corresponding
audio and ground truth frames.

B. Dance Choreography Generation

Dance choreography generation involves synthesizing mo-
tion sequences that follow the beats and rhythms of the music
while maintaining temporal consistency across motion frames.
In earlier studies, traditional methods such as clustering [84],
motion correlation coefficients [85], and statistical models [86]
were employed for music-to-dance generation. The motion
sequences generated by conventional methods lack realistic
choreographies and do not emulate the complex human danc-
ing abilities. In recent years, deep learning has emerged as a
promising alternative to conventional approaches and is now

Fig. 13: The architecture of Bailando [90].

extensively used for dance movement generation. Alemi et
al. developed GrooveNet [87], a deep neural network model
based on factored conditional restricted Boltzmann machine
and RNN, which is capable of generating dance movement
sequences driven by audio.

Although deep learning methods can synthesize moving
avatars, their movements are often irregular. To overcome this
shortcoming and improve the pose dynamics estimation, the at-
tention mechanism has been widely used by the existing gener-
ative methods. For instance, Kao et al. developed a generative-
attention-based network for synthesizing the movement of the
skeleton of a violinist playing a particular piece of music [88].
This method first extracts the Mel-Frequency Cepstral Coef-
ficients (MFCC) features of the audio. Then, the sequence of
virtual skeletons playing the violin are constructed using an
encoder-decoder network. To further improve the accuracy of
the predicted posture, Ren et al. developed a pose generator
integrated with the GRU network [89]. Using a graph-based
representation of the body joints, the Spatial-Temporal Graph
Convolutional Network (ST-GCN) is employed as a pose
generator. ST-GCN learns spatial and temporal relations of
a given sequence and produces a better alignment with the
movements of the skeleton. Similar to previous methods, audio
features are computed using an audio encoder. These features,
extracted with the assistance of ST-GCN, are transformed into
dancing skeletons. To generate realistic dancing avatars from
skeletons, the pix2pixGAN method has been widely used.

Most prior works use generative models with many net-
works and sub-networks, making the overall architecture
complex [91]. Despite the multiplicity of the conditioning
layers employed in their architectures, the synthesized dance
movements are often repetitive and misaligned with the music
rhythm. To generate diverse and aligned dance movements
while maintaining the simplicity of the overall architecture,
Transformers have been used for the music-driven dance gen-
eration. With the self-attention mechanism, Transformers can
capture longer sequences better than conventional sequence-
based models such as RNN and LSTM. Li et al. developed
a Two-Stream Motion Transformer (TSMT), consisting of
audio-stream and pose-stream Transformers, to extract pose
and audio information [92]. TSMT uses a fusion module to
combine the extracted features for motion prediction.

Robust and accurate pose estimation for dancing skeletons
plays a pivotal role in bridging the gap between the music and
visual modalities. Nevertheless, due to the stochastic nature of
dance, developing a spatiotemporal balanced dance generation
model is challenging. Siyao et al. introduced Bailando [90] for
spatially and temporally coherent dance movement generation
using a choreographic memory and an actor-critic Generative
Pre-trained Transformer (GPT). Utilizing the music and a
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Fig. 14: Some examples of the cross-domain image-to-image translation task [94].

starting pose code, actor-critic GPT produces a sequence of
future pose codes, each representing a dancing pose. It is
important to note that the dance pose codes are generated
for the upper and lower bodies separately (Fig. 13). This
can improve the variety of synthesized motions in dance
generation during inference. These vectors are embedded into
a quantized latent space using VQ-VAE [59]. By applying a
CNN decoder to the retrieved quantized features, the final 3D
dance sequences are constructed.

Although the research conducted in this area has eventually
managed to generate dancing skeletons with poses that match
the corresponding music, the controllability of gestures has not
received much attention. More recently, to mitigate this issue,
Alexanderson et al. proposed a diffusion-based model for style
controlled motion generation based on the input audio and an
optional style reference [91]. The advocated architecture is
based on Diffwave [93], an audio synthesizer model. This
model has been trained on audio-to-motion and audio-to-
dance generation datasets; hence, it is applicable to both
tasks. To enhance the controllability of the synthesized dance,
Tseng et al. proposed Editable Dance Generation (EDGE),
which is a Transformer-based diffusion model. This model
not only modifies and controls the dance poses based on
a user’s preference but also generates dance sequences of
arbitrary length with fewer jitters. EDGE makes use of a
contact consistency loss to capture the physical ground contact
behavior so as to control the movements of the feet of the
virtual dancing skeletons. This results in even more realistic
motions.

V. VISUAL CONTENT GENERATION BASED ON OTHER
MODALITIES

Visual content generation is not restricted to text and
audio conditions. We can guide the process by using other
modalities, such as semantic maps and sketches for this
task. In this section, we investigate the existing cross-domain
image-to-image translation and sketch-based vision generation
methods, summarising the underlying principles, challenges,
and applications.

A. Cross-domain Image-to-Image Translation

The task of cross-domain image-to-image translation is to
transfer images from a source domain to a target domain,

while preserving the content of the source image [95]. Some
examples are shown in Fig. 14. Based on the data used
for training, the existing methods can be categorized into
supervised and unsupervised approaches [96].

Common supervised approaches include Pix2Pix [94],
Pix2PixHD [97] and SPADE [98]. In these approaches, every
image in the source domain has a corresponding image in the
target domain. Pix2Pix is a GAN-based network comprising
U-Net as the generator and patchGAN as the discriminator.
This network generates new images by processing the provided
semantic maps. Although semantic maps carry considerable
information about the structure of the target image, the images
synthesised by Pix2Pix are not always of high quality and
resolution [94]. Later, Pix2PixHD [97] developed multi-scale
generators and discriminators to address this issue. The images
generated by Pix2PixHD are of resolution 2048 × 1024.
SPADE uses an adaptive normalization layer conditioned
spatially for image synthesis. Given an input semantic lay-
out, this new normalization mechanism captures the semantic
information more effectively than previous normalization lay-
ers such as InstanceNorm, resulting in high-resolution, high-
fidelity image generation. The normalization is performed in
a spatially-adaptive manner based on the semantic content of
each section of the image, which is very much different from
utilizing the same normalization parameters throughout the
entire image [98].

On the other hand, unsupervised approaches frequently base
their modeling procedure on a shared latent space. Using
unpaired training data, models in this task attempt to find
an accurate mapping between a source domain and a target
domain [96]. Kim et al. introduced DiscoGAN, which has
two generators and two discriminators. DiscoGAN learns to
map from one domain to another and vice versa without using
labeled data [99]. Unsupervised approaches facilitate the ac-
quisition of cross-domain relations and transfer characteristics
such as style. Chen et al. proposed Vector Quantized Image-
to-Image Translation (VQ-I2I) [100] for unconditional image-
to-image translation. VQ-I2I utilizes the vector quantization
approach and consists of three main components: content
encoder, domain-specific style encoders, and domain-specific
decoders. First, the VQ-based content encoder transforms
the input semantic map into a vector-quantized codebook.
Next, style and domain-specific features are learned using
the discrete features extracted by the domain-specific encoder.
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This allows for inter-domain and intra-domain translation. For
example, it can be used to change the color of the eyes or turn
an image scene from winter to summer.

Recently, diffusion models have surpassed the state-of-the-
art in common evaluation metrics by generating higher quality
and more realistic visual content. Saharia et al. proposed
Palette, an image-to-image translation diffusion-based model,
by employing the standard diffusion technique with the U-
Net backbone. This method demonstrates that a wide range
of image-to-image translation tasks such as colorization, in-
painting, and JPEG restoration could be addressed by diffusion
models [101]. The diffusion models learn to synthesize content
by following the Markov chain of a denoising process. To
learn a richer model of the source content for transfer to
the target domain, Sasaki et al. proposed UNpaired Image
Translation with DDPM (UNIT-DDPM) [102] by applying
a dual-domain Markov chain for the diffusion process. This
mechanism approximates the data distribution of the source
and target by denoising in a joint space.

Considering the efficiency of using a shared latent space for
training an image-to-image translation diffusion model, Li et
al. proposed a new approach using the Brownian Bridge Dif-
fusion Model (BBDM) [103] for image-to-image translation.
Instead of the standard conditional generation process, this
method interprets translation as a stochastic Brownian bridge
process and directly learns to bridge two domains using a bidi-
rectional diffusion. Similar to the latent diffusion model [36],
the stochastic Brownian bridge process is deployed in the
latent space of VQGAN. In contrast to standard diffusion
models, which start from an image and continue with Gaussian
noise at various scales, the stochastic Brownian bridge process
begins from the source image and sets the target source as the
destination. In this way, the denoising process gradually learns
to directly map across domains.

B. Sketch-based Image Generation

Among the existing cross-domain image-to-image trans-
lation tasks, sketch-to-image generation has received great
attention due to its wide practical applications. This task seeks
to synthesize a detailed image corresponding to a particular
hand sketch. Earlier methods such as Sketch2photo [104] and
Photosketcher [105] heavily rely on the quality of extracted
features and post-processing techniques such as graph cut
compositing [106]. With the emergence of deep learning and
generative models, this area has experienced a rapid uplift.
Before continuing with the explanation of this section, it is
important to note that the performance and generalization
capability of deep learning-based models are largely dependent
on the quality and quantity of the training samples. Due to the
limited number of samples for sketch-to-image generation and
the labour-intensive nature of obtaining the associated drawing
for each image, the edge map is frequently used for sketch-
to-image generation.

Chen et al. proposed SketchyGAN [106] for image gener-
ation based on sketches. Due to a limited number of samples
in training, edge maps are constructed via holistically nested
edge detection. Next, to make edge maps sketch-like, data

augmentation is introduced. Based on the reported results,
increasing the number of training data samples results in
improved generation performance. Further, another contribu-
tion of this work is the introduction of a Masked Residual
Unit (MRU) to both the generator and discriminator. This
block contributes to the information flow of the network by
processing the feature maps of image edges to condition the
generated images.

Similarly, Li et al. proposed a Conditional Self-Attention
GAN (CSAGAN) [107] for sketch-to-image generation. They
concentrated specifically on face sketch-to-image generation.
Generating face images from sketches is challenging, espe-
cially if the conditional line segments are incomplete. To
encourage the model to capture the face structure and to
learn the relations between distinct regions, the self-attention
technique is employed in the generator. The generator is an
encoder-decoder architecture, which takes advantage of MRUs
to share information across the network. This mechanism,
integrated with self-attention, can assist the model in learning
the local and global context of faces.

Due to the lack of paired image and sketch datasets,
Bhunia et al. proposed the use of unlabeled images to boost
the efficacy of sketch-to-image generation [108]. This study
developed a semi-supervised framework, consisting of two
major components that jointly train photo-to-sketch generation
and Fine-Grained Sketch-Based Image Retrieval (FG-SBIR)
models. Photo-to-sketch generation can be considered the core
of this framework, as it generates sketch pairs for unlabeled
images and facilitates sketch-to-image generation. Since there
is a risk of low quality and misaligned sketch generation,
a discriminator-guided mechanism is leveraged to guide the
sketch generator in producing high-quality sketches.

As mentioned earlier due to the scarcity of sketch-image
pairs, edge maps are utilized extensively for this task. Edge
maps are primarily boundary representations of an image,
but human drawings vary in style and precision. Given the
same description such as “a cat sitting on a bench”, each
person creates a unique sketch that is semantically comparable.
It is essential to train sketch-to-image generation models
using sketches rather than edge maps in order to preserve
the diversity and accuracy of the generated results. However,
using only sketch-image pairs has its own set of obstacles.
For instance, due to limited diversity in sketch-image pairs,
SketchyGAN [106] can only generate up to 50 image cate-
gories.

To overcome these limitations, Koley et al. proposed “Pic-
ture that Sketch” [109] for photorealistic sketch-to-image gen-
eration. This model is an encoder-decoder model comprised of
an autoregressive sketch mapper as the encoder and StyleGAN
as the decoder. The proposed autoregressive sketch mapper has
been trained to map a given sketch to its corresponding image
StyleGAN latent space. Next, using a fine-tuned StyleGAN
model and the generated vector from the sketch mapper, a
photorealistic image of a given sketch is generated. To control
the training and ensure alignment between the ground truth
and the synthesized image, the reconstruction loss and fine-
grained discriminative loss are employed.
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(a) LRW (b) AMASS (c) MEAD

(d) KIT Motion Language (e) Voxceleb (f) AIST++

Fig. 15: Examples of the LRW [24], AMASS [115], MEAD [27], KIT Motion Language [119], Voxceleb [26] and AIST++ [69]
datasets.

TABLE I: Datasets for cross-modal content generation.

Task Datasets Detail

Speech-to-Video
LRW [24] 450,000 video clips
LRS [25] 118,116 video clips
Voxceleb [26] 22,496 video clips
GRID [110] 34,000 video clips
CREMA-D [111] 7,442 video clips
MEAD [27] 281,400 video clips
MOSEI [112] 23,453 video clips
CMU-MOSI [113] 2,199 video clips
LLP [114] 11,849 video clips
HDTF [83] 300 video clips

Text/label-to-Motion
AMASS [115] 11,451 motion sequences
HumanAct12 [116] 1,191 motion clips
BABEL [117] 40 hours of mocap data
HumanML3D [118] 14,616 motion sequences
KIT Motion Language [119] 3,911 motion clips

Speech-to-Motion
Talking with hands [120] 16.2M video frames
Trinity Speech
Gesture(TSG) [121] 4 hours motion videos

Music-to-Dance
GrooveNet [87] 0.38 hours dance videos
Dance w/Melody [122] 1.6 hours dance videos
AIST++ [69] 5.2 hours dance videos
MMD [123] 19.91 hours dance videos
FineDance [124] 14.6 hours dance videos

Text-to-Image/Video
CUB [125] 11,788 images
MS-COCO [126] 328k images
ImageNet [127] 14k images
LAION [128] 400M image-text pairs
UCF-101 [129] 13,320 video-label pairs
CelebA-Dialog [130] 202,599 image-text pairs
Conceptual 12M [131] 12M image-text pairs

VI. DATASETS AND EVALUATION METRICS

This section introduces the datasets and evaluation metrics
used for the visual content generation. It helps in understand-
ing the strengths and limitations of the current datasets and

metrics, identifying potential gaps that need to be addressed.

A. Datasets

Given the crucial role of data in the development of a robust
generative model, we summarize the commonly employed
datasets for cross-modal content generation in Table I. In
particular, we have provided datasets employed in both text-
to-visual and audio-to-visual content generation. Further, we
would like to note that some research works such as DALL-
E [43] have collected their own internal dataset in addition to
utilizing publicly available datasets. We have to exclude this
dataset from this table, as we do not have access to them.

Most previous literature addressed datasets related to image-
to-vision and text-to-vision synthesis, while a little amount of
work focused on audio (speech and music) to visual content
(image and video). To fill the gap, we have put a special focus
on audio-to-visual content generation datasets. For simplicity,
we have categorized data into four categories: speech-to-
video, text/label-to-motion, speech-to-motion, and music-to-
dance generation, respectively. Some examples of the datasets
are shown in Fig. 15.

To assist researchers in choosing a suitable dataset or
determining gaps and improving them, we briefly compare
commonly utilized datasets amongst their counterparts for
each category. We would also like to note that choosing
between datasets largely depends on the specific research
question or application. In some cases, combining insights
from multiple datasets could provide a more robust and
comprehensive understanding of patterns and relations among
data for training a model.

One of the most well-known datasets for the talking face
generation is LRW [24], which has served as a benchmark for



14

TABLE II: Typical evaluation metrics used for cross-modal visual content generation.

Task Metric Description

Video and Image Synthesis
Inception Score (IS) [132] Evaluating the visual quality
Frechet Inception Distance (FID) [133] Evaluating the visual quality

Frechet Video Distance (FVD) [134] Measures the fidelity and
diversity of generated samples

Structural Similarity Index Measure (SSIM) [135] Measures the similarity
between two images

Peak-Signal-to-Noise Ratio (PSNR) Measures the visual quality
between two images

Dance Choreography
Generation

Beat Alignment Score (BAS) [73]
Measures similarity
between motion and
audio beats

Motion Generation
Motion-retrieval
precision (R-precision) [136]

Calculates the text and motion
top 1,2,3 matching accuracy

Reconstruction Accuracy [137]
Average joints positions
distance and root
trajectory distance

Text-to-Video
CLIP Similarity (CLIPSIM) [138]

Average CLIP similarity
between video frames
and text

a variety of related tasks. This dataset was collected by BBC,
ensuring a professional production quality. Voxceleb [26]
contains a relatively higher number of videos but they are
collected online. Videos can vary in quality, but most of them
are of acceptable quality. HDTF [83] is a relatively new dataset
specifically captured for audio-to-talking face generation. It
has focused on high-quality data collection. Its videos are
longer, compared with LRW and Voxceleb. CREMA-D [111],
MEAD [27] and GRID [110] are captured under a controlled
environment, presenting well-structured, consistent and high-
quality videos. These attributes make them appropriate for
talking face generation, lip reading, emotion, and expression
analysis.

AMASS [115] stands out for its extensive collection of data
from various sources and its utility in 3D body reconstruction.
Humanact12 [116] and BABEL [117] also contain acceptable
motion sequences. However, if the intersection of language
and motion is the primary interest, then the BABEL dataset
can be a better option.

For tasks that need precise hand gesture predictions based
on a spoken language, “Talking with Hands” [120] would be
the preferred choice. However, if the objective is to understand
or generate broader body motions in response to speech,
then TSG [121], with its comprehensive capture of full-body
gestures, becomes more relevant. In the context of music-to-
dance generation, FineDance [124] is a relatively newer dataset
and addressed prior issues in terms of the sample size, diversity
in dance movements and annotation accuracy. Information
related to skeletons is reported in 3D space, providing more
control and realism to generated dancing avatars.

MS-COCO [126] is a widely employed dataset for image
generation tasks. It has 328k images across 80 categories,
offering a broad foundation for diverse applications. Although
employed for image generation, it was primarily created
for object detection and segmentation. On the other hand,
LAION [128] and Conceptual12M [131] present a rather
specialized dataset, merging a vast number of images with
their corresponding textual descriptions. With their extensive

volume, they promise a robust model training opportunity.
CelebA-Dialo [130] offers task-specific text-to-image gener-
ation data. It is suitable for generating human faces from
detailed textual prompts describing expected facial attributes.

We further outline several limitations associated with the
current datasets to assist researchers in identifying and under-
standing the challenges in cross-modal visual content genera-
tion.

• Although the quality of current collected video and audio
has improved as a result of advanced equipment, they still
suffer from being of limited size and diversity, especially
among music-to-dance generation datasets. This restricts
the ability of a trained model in generalization and
robustness.

• Cross-modal datasets often suffer from flawed annota-
tions which limits the ability of a model in capturing
information about the relationships between different
modalities and accurate mapping from one modality to
another. This affects the alignment between music to
dance movements and the synchronization between audio
and lip movements of 3D avatars.

• The last and most important issue associated with cross-
modal datasets that we want to point out is privacy and
ethical concerns. This issue makes data gathering in this
field challenging as ensuring the privacy and consent of
individuals involved in data gathering is important.

B. Evaluation Metrics
Different assessment criteria for generative models have

been established in the field of visual content synthesis.
Table II briefly describes these metrics. In addition, we sum-
marize the evaluation results of some popular methods in
cross-modal visual content generation in Table III. Although
we have specified categories such as dance choreography
generation and text-to-video, it is noteworthy to mention, that
metrics provided in the video and image synthesis group can
be utilized for the majority of the tasks involved in generating
visual content.
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TABLE III: A comparison of representative methods in cross-
modal visual content generation.

Task, Dataset Model Evaluation Metric

FID↓

Text-to-Image
(MS-COCO [126])

Cogview [29] 27.10
DALLE [43] 17.89
GLIDE [50] 12.24
DALL-E2 [57] 10.39
Stable Diffusion [36] 12.63

R-Precision↑

Text-to-Motion
(HumanML3D [118])

MotionCLIP [63] 0.0029
AvatarCLIP [65] 0.0002
MotionDiffuse [116] 0.491

SSIM↑

Audio-to-Talking face
(HDTF [83])

MakeItTalk [80] 0.544
Wav2Lip [6] 0.761
DiffTalk [33] 0.950

FID↓

Sketch-to-Image
(Sketchy dataset [140])

Pix2Pix [94] 33.4
PhotoSketch [105] 25.7
FG-SBIR [108] 8.9

This deficiency led some works [43], [52] to apply quali-
tative analysis such as human evaluation to assess the quality
of the generated visual content. The primary drawbacks of
this qualitative metric are irreproducibility and the extremely
subjective nature of them [139]. This is considered a major
limitation in cross-modal learning.

As mentioned earlier, metrics such as Frechet Inception
Distance and Peak-Signal-to-Noise Ratio are often employed
across various cross-modal generation tasks. Although these
metrics have been employed frequently and can be consid-
ered a good starting point for comparing outcomes obtained
from novel methods to previous state-of-the-art, they are
not completely reliable. Some research [81], [139] reported
how PSNR penalizes their results and that there is a gap
between subjective scores in terms of human perception and
the objective measures in this metric.

Each modality has unique characteristics and using the same
evaluation metrics may not fully capture the quality, diversity,
or semantic coherence of the generated content. For instance,
in audio-to-talking face generation, evaluation metrics require
focusing on multiple aspects including but not limited to the
quality of the generated video, the incorporation of realistic
eye blinking during speaking, identity preservation, and audio-
lip synchronization [74].

This is particularly important for recent tasks such as text-
to-video generation. Generated videos should not only accu-
rately reflect the input prompt but also contain spatiotemporal
consistency across synthesized frames. This task requires fur-
ther investigation as the majority of research on this topic [53],
[54] either utilized human evaluation or extended text-to-image
metrics for assessing the generated visual content. As a result,
developing a task-specific and interpretable evaluation metric
is highly encouraged.

VII. CHALLENGES AND FUTURE DIRECTIONS

Diffusion models are predominantly employed in various
disciplines. They have demonstrated a significant improvement

over the state-of-the-art methods. These models produce high-
fidelity visual content, while avoiding the network collapse
problem. Diffusion models are likelihood-based models and go
through an iterative process to generate samples. This might
lead to excessive use of computing resources [36]. Several
studies proposed executing denoising steps in the latent space
of images, while ensuring realistic and diverse visual content
synthesis [36], [57], [58]. Developing models using a latent
representation for the sampling process is highly encouraged
to balance image quality and computational costs.

Despite the visual fidelity of the output synthesised by
diffusion models, their capacity is limited to the task they
have been trained on. It is efficient to develop a multi-task
multimodal network, that can process data in different modal-
ities for generating images, 3D samples, text and etc. Versatile
Diffusion (VD) [141] is a sample of this concept. Although
VD is capable of processing text-to-image and image-to-text,
further research on this topic is required to tackle a wider
range of modalities.

Despite demonstrating improvements in the visual content
generated by diffusion models, a further study of other genera-
tive models is encouraged. Several recent studies have shown
realistic and aligned synthesized visual content by utilizing
Transformers [142] and GANs [79], [143] as the primary
generative model. In comparison to diffusion models, GANs
require a single forward step, which makes them faster in
training.

In spite of the efficiency in training speeds and strong
alignment between the input and the synthesized results, these
models (especially GANs) are behind the current state-of-the-
art in terms of generation performance. This should not prevent
but rather encourage further research on these generative
models for cross-modal visual content generation. As Wang
et al. demonstrated, integrating GAN with a diffusion model,
e.g., Diffusion-GAN [144], can address generative adversarial
network training limitations (such as slow convergence and
mode collapse [39],) while further improving the diversity
and quality of generated images. This undoubtedly deserves
further investigation to determine its applicability to cross-
modal tasks.

Transformers, on the other hand, have demonstrated excep-
tional performance in natural language processing tasks and
as condition encoders (e.g., text and audio encoders) in multi-
modal generation tasks. However, there is still room for further
investigation of this architecture in cross-modal visual content
generation. It is encouraged to explore the performance of
transformers as the main learning module in this domain. Their
attention mechanism should be repurposed to best link the
source domain to the target domain.

Furthermore, in order to synthesize realistic coherent motion
in videos, generating arbitrarily long sequences requires more
attention. Some work addressed this using a Transformer-
based decoder [62], or by conditioning on a sequence of
distinct text prompts at each time step [55]. However, the
majority of the video synthesis methods in the literature are
restricted to generating fixed-length videos. This affects their
ability to handle complex scenes and produce a realistic video
frame generation. Further, if the generated visual content
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includes a moving avatar or talking face, the ability to produce
a dynamic pose and a relevant emotional expression in concert
with the input modality (speech or text) is crucial. Currently,
most of the generative models exhibit limited head movements,
greatly impacting the realism of the synthesized content. This
can be investigated further by enhancing joint latent space and
cross-attention mechanisms.

VIII. CONCLUSION

Cross-modal content generation facilitates the synthesis of
information from one modality to another, hence enabling
the generation of expressive and controllable content. In this
survey, we comprehensively reviewed recent visual content
generation methods across different modalities. In particular,
we grouped the research works based on their input modality
into text-to-vision, audio-to-vision, and other modality-guided
visual content generation. It is important to jointly investigate
these modalities for visual content generation as they share
common underlying methods. Understanding one domain well
can facilitate the development of another domain.

In addition to reviewing the recently published method-
ologies, we presented a concise comparison of the current
datasets and metrics. This information provides an insight
into the limitations of the conventional assessment of visual
content generation methods. The lack of reliable and task-
specific evaluation metrics is one of the main shortcomings.
Through the examination of recent studies, we have catalogued
improvements and identified open challenges in this domain,
such as the task of extending cross-modal visual content
generation to multi-modality visual content generation.

The survey of cross-modal visual content generation sum-
marised the current state of the art. By discussing the methods,
datasets, and evaluation metrics, we have identified both the
progress and remaining challenges. We hope this survey will
help to promote the future research in the cross-modal visual
generation domain and lay the ground for advancing the state-
of-the-art in this field.
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